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Localized perturbations of integrable quantum billiards
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The statistics of energy levels of a rectangular billiard that is perturbed by a strong localized potential are
studied analytically and numerically, when this perturbation is at the center or at a typical position. Different
results are found for these two types of position. If the scatterer is at the center, the symmetry leads to
additional contributions, some of which are related to the angular dependence of the potential. The limit of the
d-like scatterer is obtained explicitly. The form factor, which is the Fourier transform of the energy-energy
correlation function, is calculated analytically, in the framework of the semiclassical geometrical theory of
diffraction, and numerically. Contributions of classical orbits that are nondiagonal are calculated and are found
to be essential.
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The distribution of energy levels exhibits a high degree
universality and is a central subject in the field of quant
chaos@1,2#. For systems that are chaotic in the classical lim
the statistics are those of random matrix theory@3#, while for
typical integrable systems the level distribution satisfi
Poissonian statistics@4#. In the semiclassical regime this un
versal behavior holds for a wide range in energy. There
also regimes of energy where spectral correlations relate
periodic orbits are important@5,6#. In intermediate situations
such a high degree of universality is not found. For mix
systems, where in some parts of phase space the motio
chaotic and in other parts it is regular, the statistics exh
some general features@7,8#. Another type of intermediate
behavior may be found for integrable systems perturbed
singularities of spatial extension that are much smaller t
the wavelength of the quantum particle. Examples of r
evant systems are billiards with flux lines, sharp corners,
d-like interactions@9–11#. Here we report results obtaine
for a rectangular billiard perturbed by ad-like impurity @12#,
known as the Sˇeba billiard @9#. Some of these results ca
alternatively be concluded from a recent general formulat
by Bogomolny and Giraud@13#.

The interest in billiards of various types is primarily th
oretical since it is relatively easy to analyze them analytica
and numerically. Billiards have been studied also experim
tally for electrons@14#, microwaves@15#, and laser cooled
atoms@16#. We hope that in the future perturbations of t
type discussed in the present work will also be introduc
experimentally.

Trace formulas that express the quantum density of st
in the semiclassical limit as sums over classical periodic
bits were derived for chaotic@17,18# and integrable@19# sys-
tems. For perturbations smaller than the wavelength, s
dard semiclassical theory used in the derivation of th
formulas fails and diffraction effects have to be taken in
account. This can be done in the framework of the geome
cal theory of diffraction@20#. In this approximation, which is
valid far from the perturbation, the Green’s function for t
system ~without the boundary! is given by G(k;r ,r 8)
.G0(k;r ,r 8)1G0(k;r ,r0)D(u,u8)G0(k;r0 ,r 8), where u
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and u8 denote the directions ofr2r0 and r02r 8, respec-
tively, and G0 is the free Green’s function. The diffractio
constantD describes the scattering from the perturbation. F
the rectangular billiard with ad-like perturbation, which is
the subject of the present work,only diffraction effects are
responsible for the deviations from the behavior of integra
systems. Therefore this is an ideal system for the explora
of such effects. Moreover, for this problem the analytical a
numerical calculations are relatively easy. The statistics
pend on the location of the scatterer and on the bound
conditions @11,21#. This is in contrast to chaotic system
where the spectral statistics are not affected by such sca
ers @22#.

The diagonal approximation@5#, where only contributions
from orbits with equal actions are considered, is extensiv
used in the field of quantum chaos. It is not applicable
systems with localized perturbations. A method to take i
account dominant nondiagonal contributions in integra
systems was developed by Bogomolny@23# and will be used
here.

In this work a rectangular billiard with sidesax anday ,
such that the aspect ratio is irrational, perturbed by a loc
ized scatterer is studied. The scatterer is represented
potential of typical sizea such that

U~r !5
1

a2
f S r

aD ~1!

where f (y) is small wherey is large.
The diffraction constant is the on-shell matrix element

the T matrix D(u8,u)5^kuT(E)uq& wherek is the outgoing
momentum~in the directionu8) andq is the incoming mo-
mentum~in the directionu). The energies of the incoming
and outgoing waves are equal, that is,k5q5AE ~in the
units \51 andm5 1

2 used in this Brief Report!. The Born
series cannot be used to computeD(u8,u) whenka!1 since
the free Green’s function diverges as lnka at short distances
A method that is regular whenka!1 was introduced by
Noyce @24#. In this method the scattering in the forward d
©2002 The American Physical Society04-1
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rection is resummed@24#. It leads to a diffraction constan
that is a ratio of series. The series in the numerator and in
denominator are expanded in the number of scattering ev
~just like the Born series!. Every term in these series is the
expanded forka!1 ~up to terms of orderk2a2) and both
series are summed~with respect to the number of scatterin
events! to give the angle dependent diffraction constant@12#

D~u8,u!.CF11 i
ka

2
$~eiu2eiu8!M11c.c.%

2k2a2S M01$~e2iu1e2iu8!M21c.c.%

2 (
c,d521,11

Mcde
i (cu81du)D G , ~2!

where

C[H V~1!

V0
1

i

4
2

1

2p Fg1 lnS ka

2 D G1k2a2
Q~1!

V0
J 21

,

~3!

c.c. denotes the complex conjugate,g is Euler’s constant,
andV05*d2y f(y). Also V(1), Q(1), M0 , M1 , M2, and
Mcd are constants, independent ofu,u8, and Mcd depend
logarithmically onka. These constants, given by series
integrals, involving the potential~1!, were calculated in@12#.

In the limit a→0 andk fixed, a finite diffraction constan
is obtained if the potential is such thatV(1)/V0
;(1/2p)@ ln(a/l)1B#, wherel andB are constants, leading t

D.2pF ip

2
2 lnS kl

2 D2g1BG21

. ~4!

It depends on the combinationB2 ln l of the two parameters
l andB. Therefore these are somewhat arbitrary in the lim
a→0.

First we assume thata is sufficiently small so that Eq.~2!
can be approximated by Eq.~4!, and because of its slow
variation with k it can be replaced by the constantD. The
oscillatory part of the density of states, in the semiclass
limit, is a sum over contributions of periodic and diffractin
orbits. Diffracting orbits are orbits that start and return to t
scatterer. For the rectangular billiard with a localized~angle
independent! scatterer at its center the density of states
@12#

dosc~E!5(
p

Ap
(0)eikl p1(

j 1

Aj 1

(1)eikl j 11 (
j 1 , j 2

Aj 1 , j 2

(2) eik( l j 1
1 l j 2

)

1 (
j 1 , j 2 , j 3

Aj 1 , j 2 , j 3

(3) eik( l j 1
1 l j 2

1 l j 3
)1•••1c.c., ~5!

where

Ap
(0)5~2A/pA8pklp!e2 ip/4,
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Aj 1

(1)5@~21!x1Al j 1
/pkA8pk#De2 i (3/4)p,

Aj 1 , j 2

(2) 5~21!x2@~ l j 1
1 l j 2

!/4p2k2Al j 1
l j 2

#D2e2 i (3/2)p,

and

Aj 1 , j 2 , j 3

(3) 5~21!x3@16D3/3pk~8pk!3/2#

3~ l j 1
1 l j 2

1 l j 3
!/Al j 1

l j 2
l j 3

e2 ip/4,

where x15Nj 1
1M j 1

and xi5xi 211Nj i
1M j i

. The area of

the billiard isA, the length of a periodic orbit isl p , andl j is
the length of a diffracting segmentj with Nj andM j reflec-
tions from the boundary. The density of states~5!, which is
expanded to the third order inD, is used to compute the
correlation function

R2~h!5 K doscS E2
hD

2 DdoscS E1
hD

2 D L D2 ~6!

and its Fourier transform, the form factor

K~t!5E
2`

`

dhR2~h!e2p iht, ~7!

whereD denotes the mean level spacing. The angular bra
ets denote averaging over an energy scale much larger
D but much smaller thanE. If only the contributions from
periodic orbits to the density of states are taken into acco
the form factor is given by

K~t!

2pD
5K (

pp8
ApAp8

* ei (Sp2Sp8)dS 2p

D
t2

tp1tp8
2 D L ~8!

where Sp is the action of the orbit,tp is its period, andt
.0 is assumed. The diagonal approximation can be use
compute the contributions from periodic and once diffracti
orbits. When there are more than three segments of orbi
the exponent of Eq.~8!, nondiagonal contributions are o
importance, since then one finds saddle manifolds consis
of different combinations of orbits with almost identical tot
length so that their phase is almost stationary@23#. An ex-
ample of such a saddle manifold is given by a periodic or
of length l p52ANp

2ax
21M p

2ay
2, and the pairs of diffracting

segments of lengthsl j
i
5ANj

i

2 ax
21M j

i

2 ay
2 that satisfy Nj 1

1Nj 2
52Np , M j 1

1M j 2
52M p , and Nj i

/M j i
.Np /M p .

The length differencel p2 l j 1
2 l j 2

is small, of the order of

1/k. Since in billiards the action isSj5kl j the action differ-
ence is of order unity and these contributions are in pha
Other nondiagonal contributions of this type can contrib
significantly as well. The resulting form factor for a scatter
at the center, up to ordert3, is found to be@12#

K~t!512
uDu2

4
t1

1

8
uDu4t21S 1

2
uDu42

1

24
uDu6D t3.

~9!
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To obtain Eq.~9! we used the optical theorem, which fo
angle independent scattering is

Im D52
1

4
uDu2. ~10!

If the scatterer is at a typical location, namely, shifted fro
the center by (dxax ,dyay), with dx ,dy , anddx /dy all irra-
tional, the form factor is@12#

K~t!512
uDu2

4
t1

9

128
uDu4t21

81

512
uDu4t32

25

1536
uDu6t3.

~11!

The difference between Eqs.~9! and ~11! is due to length
degeneracies. When the scatterer is at the center ther
four diffracting segments of identical length, while if it i
moved from the center this degeneracy is broken. For a q
ter of all diffracting segments, for whichNj andM j are odd,
the degeneracy is totally lifted. For orbits with evenNj and
M j the location of the scatterer does not affect this deg
eracy. For the rest of the segments the degeneracy is
partly lifted. When all length degeneracies are taken i
account one obtains Eq.~11!.

The form factor can be compared with numerical resu
obtained for the case of point interactions, where the eig
values are the roots of some function, and therefore can
easily found numerically@9#. The form factor was calculate
for several values ofD and compared to the analytical resu
~11! in Fig. 1. Agreement with Eq.~11! is found for short
times, as is expected.

For a scatterer at the center only levels with wave fu
tions that are symmetric with respect to theX andY axes are
perturbed by the scatterer. Since the value of these w
functions for all eigenvalues is the same@cn(x50)
52/AA#, the resulting equation is the same as for the Sˇeba
billiard with periodic boundary conditions@11#. The form
factor of the perturbed levels is related to that of the f

FIG. 1. The form factor of a scatterer at a typical position,
some diffraction constants, thin lines, compared to the analyt
result ~11!, heavy lines.
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spectrum. The eigenvalues of the four different symme
classes of the rectangle can be assumed to be uncorrel
leading to

K f ull~t!5
3

4
1

1

4
Kper~4t!. ~12!

The form factor calculated from all levels and the sca
form factor obtained from the perturbed levels with the he
of Eq. ~12! are compared to the analytical result~9!, for D
524i in Fig. 2. It is clear that Eq.~12! is valid. For very
small times the full form factor deviates from its expect
value since there are not enough orbits that contribute~the
calculation is not semiclassical enough!.

In order to study the effect of the angle dependence of
diffraction on the form factor it was calculated to ordert2 for
the diffraction constant~2!. For a scatterer at a typical loca
tion the form factor is found to be@12#

K~t!512
1

4
uCu2t1

9

128
uCu4t21•••. ~13!

This form factor is similar to Eq.~11!. SinceC of ~3! satisfies
the optical theorem~10!, this form factor can also be ob
tained from an angle independent potential, with the diffra
tion constantC. If the scatterer is at the center@12#,

K~t!512
1

4
uCu2t1

1

8
uCu4C8t21••• ~14!

with C8[122k2a2M0, where M0 is related to integrals
over the potential~1!. It resembles the form factor~9! that
was obtained for angle independent scattering. The mo
cation is of the orderk2a2 and typically cannot change th
sign of the expansion coefficients.

The condition for the applicability of the approximation
used in this Brief Report isa!l!ax ,ay , wherel is the
wavelength of the particles. Up to corrections of order (ka)3,

al

FIG. 2. The form factor for the scatterer at the center (x050)
compared to the scaled form factor calculated from perturbed le
~12! and the analytical result~9!.
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BRIEF REPORTS PHYSICAL REVIEW E 65 067204
the form factor~13! reduces to Eq.~11! in the ordert2.
Therefore the angle dependence plays no role up to this
der. If the scatterer is at the center the situation is somew
different as can be seen by comparing Eq.~14! with Eq. ~9!.
There is a correctionC8 resulting from the angular depen
dence ofD(u8,u) given by ~2!. It is a consequence of th
increased number of length degeneracies of the diffrac
orbits when the scatterer is at the center. Since the f
factor ~13! describes essentially angle independent scatte
the limit a→0 describes correctly the physics of the regim
a,l. This is so although the classical dynamics~in the long
time limit! are expected to be chaotic in nearly all of pha
space and similar to those of the Sinai billiard. This robu
ness improves the chances for the experimental realizatio
the results of the present work. Fora@l, semiclassical
theory works and the system should behave as a Sinai
liard, with level statistics given by random matrix theo
@3,5# ~with deviations, see@25#!.

The spectral statistics found in the present work dif
from those of the known universality classes. They are ch
acterized by a form factor of the type presented in Figs
s
os

et

.

t,
-
,
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and 2. This form factor is equal to 1 att50, resulting from
the fact that for smallt the number of classical orbits that a
scattered is small. The contribution that is first order int
originates from combinations of forward diffracting orbi
and periodic orbits. These always have the same leng
leading to the contribution ImDt. By the optical theorem
~10! it is always negative. Fort@1 the form factor ap-
proaches unity because of the discreteness of the spec
@5#. This general description should hold for other integra
systems that are perturbed similarly.
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