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Localized perturbations of integrable quantum billiards
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The statistics of energy levels of a rectangular billiard that is perturbed by a strong localized potential are
studied analytically and numerically, when this perturbation is at the center or at a typical position. Different
results are found for these two types of position. If the scatterer is at the center, the symmetry leads to
additional contributions, some of which are related to the angular dependence of the potential. The limit of the
S-like scatterer is obtained explicitly. The form factor, which is the Fourier transform of the energy-energy
correlation function, is calculated analytically, in the framework of the semiclassical geometrical theory of
diffraction, and numerically. Contributions of classical orbits that are nondiagonal are calculated and are found
to be essential.
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The distribution of energy levels exhibits a high degree ofand ¢’ denote the directions af—r, andr,—r’, respec-

universality and is a central subject in the field of quantumjyely, and G, is the free Green’s function. The diffraction
chaod1,2]. For systems that are chaotic in the classical limitconstanD describes the scattering from the perturbation. For
the statistics are those of random matrix thel@)y while for  the rectangular billiard with a@-like perturbation, which is
typical integrable systems the level distribution satisfieghe subject of the present worknly diffraction effects are
Poissonian statistidgl]. In the semiclassical regime this uni- responsible for the deviations from the behavior of integrable
versal behavior holds for a wide range in energy. There argystems. Therefore this is an ideal system for the exploration
also regimes of energy where spectral correlations related tf such effects. Moreover, for this problem the analytical and
periodic orbits are importaii,6]. In intermediate situations numerical calculations are relatively easy. The statistics de-
such a high degree of universality is not found. For mixedpend on the location of the scatterer and on the boundary
systems, where in some parts of phase space the motion d¢gnditions[11,21. This is in contrast to chaotic systems
chaotic and in other parts it is regular, the statistics exhibityhere the spectral statistics are not affected by such scatter-
some general featurds,8]. Another type of intermediate ers[22].
behavior may be found for integrable systems perturbed by The diagonal approximatiofs], where only contributions
singularities of spatial extension that are much smaller thafrom orbits with equal actions are considered, is extensively
the wavelength of the quantum particle. Examples of relysed in the field of quantum chaos. It is not applicable for
evant systems are billiards with flux lines, sharp corners, andystems with localized perturbations. A method to take into
o-like interactions[9—-11]. Here we report results obtained account dominant nondiagonal contributions in integrable
for a rectangular billiard perturbed bydlike impurity [12],  systems was developed by Bogomo|@g] and will be used
known as the 8ba billiard[9]. Some of these results can here.
alternatively be concluded from a recent general formulation |n this work a rectangular billiard with sides, and ay,
by Bogomolny and Girau¢13]. such that the aspect ratio is irrational, perturbed by a local-

The interest in billiards of various types is primarily the- jzed scatterer is studied. The scatterer is represented by a
oretical since it is relatively easy to analyze them analyticallypotential of typical sizea such that
and numerically. Billiards have been studied also experimen-
tally for electrons[14], microwaves[15], and laser cooled 1
atoms[16]. We hope that in the future perturbations of the U(r=—f
type discussed in the present work will also be introduced a
experimentally.

Trace formulas that express the quantum density of stategheref(y) is small wherey is large.
in the semiclassical limit as sums over classical periodic or- The diffraction constant is the on-shell matrix element of
bits were derived for chaotid 7,18 and integrabl¢19] sys-  the T matrix D(¢’,6) =(k|T(E)|a) wherek is the outgoing
tems. For perturbations smaller than the wavelength, starmomentum(in the directiond’) andq is the incoming mo-
dard semiclassical theory used in the derivation of thesenentum(in the direction#). The energies of the incoming
formulas fails and diffraction effects have to be taken intoand outgoing waves are equal, that kssq=E (in the
account. This can be done in the framework of the geometriunits #=1 andm=3 used in this Brief Repoyt The Born
cal theory of diffractior{ 20]. In this approximation, which is series cannot be used to comptéd’, ) whenka<1 since
valid far from the perturbation, the Green’s function for the the free Green’s function diverges askhnat short distances.
system (without the boundary is given by G(k;r,r’) A method that is regular wheka<1 was introduced by
=Gg(k;r,r")+Gg(k;r,ro)D(0,60')Go(k;rq,r'), where &  Noyce[24]. In this method the scattering in the forward di-
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rection is resummed24]. It leads to a diffraction constant A(l):[(_1)X1\/r/wk\/ﬁ]|ge—i(3/4)w,
that is a ratio of series. The series in the numerator and in the I It
denominator are expanded in the number of scattering events
(just like the Born serigs Every term in these series is then
expanded fokka<1 (up to terms of ordek?a?) and both
series are summe@vith respect to the number of scattering and
events to give the angle dependent diffraction constdlr]

A

I1+d2

= (= 1) (1), +1; ) 4m2k2 T} T D213,

AB). = (—1)%[16D3/3mk(87k)¥2]

I1:d0sd3

ka . i
D(6",0)=C| 1+i—{(e'"~€e'" )My +c.c} X (1,1, ) e ™
- 2o oig) WherexlzleJerl andxj=x;_1+N; +M; . The area of
I | I |
—k%a%| Mo+{(e”"+e"" )M, +c.c} the billiard is.A, the length of a periodic orbit i§,, and|  is
the length of a diffracting segmeptwith N; andM; reflec-
i(co" +do) tions from the boundary. The density of statég which is
_cd:Zl+l Mcqe ' 2 expanded to the third order iD, is used to compute the
' ' correlation function
where
_ 7A 71\ \2
. Rao(7)={ dosc E_T dosd E+7 A (6)
Vil i1 Q1)) 7t
C= +——o—| y+In| || +K?a? :
Vo 4 2m 2 Vo 3 and its Fourier transform, the form factor
c.c. denotes the complex conjugate,is Euler's constant, K(7)= f_ dnR,(7)e*™ 77, (7)

andV,=[d?yf(y). Also V(1), Q(1), Mg, M;, M,, and
M.q are constants, independent @f6’, and M.4 depend
logarithmically onka. These constants, given by series of
integrals, involving the potentidll), were calculated ifi12].

In the limit a— 0 andk fixed, a finite diffraction constant
is obtained if the potential is such thaV(1)/V,
~(1/27)[In(a/l)+B], wherel andB are constants, leading to

whereA denotes the mean level spacing. The angular brack-
ets denote averaging over an energy scale much larger then
A but much smaller thai. If only the contributions from
periodic orbits to the density of states are taken into account
the form factor is given by

> ()

L where S, is the action of the orbitf, is its period, andr
It depends on the combinatidd—In| of the t".VO par.ameter.s >0 is assumed. The diagonal approximation can be used to
| andB. Therefore these are somewhat arbitrary in the I'm'tcompute the contributions from periodic and once diffracting
a—0. . - orbits. When there are more than three segments of orbits in

First we assume thatis sufficiently small so that Ed2) o exponent of Eq(8), nondiagonal contributions are of

can be approximated by E¢4), and because of its SIow jynortance, since then one finds saddle manifolds consisting
variation withk it can be replaced by the constddt The o yitferent combinations of orbits with almost identical total
oscillatory part of the density of states, in the semlclassmafength so that their phase is almost stationg2g]. An ex-

Iith;it, is affsum over gontributiobns 0:1 periodic agd diﬁractinﬁ ample of such a saddle manifold is given by a periodic orbit
orbits. Diffracting orbits are orbits that start and return to the _ \/—2—2—2—2 ; ; ;
scatterer. For the rectangular billiard with a localiZedgle of length l,=2yNpai+Mjpay, and the pairs of diffracting

independentscatterer at its center the density of states issegments of length$; = \/N7az+M?aj that satisfyN;
12 B i B i i _
[12] +Nj,=2N,, M +M; =2M,, and N;/M;=N,/M,.
The length differencetp—ljl—lj2 is small, of the order of
dosd E)=2 AP p+ > At > A &3, *1i) 1. Since in billiards the action i§;=kI; the action differ-
P 1 R ence is of order unity and these contributions are in phase.

_ Other nondiagonal contributions of this type can contribute
+ > AP ekl i)+ +ce,  (5)  significantly as well. The resulting form factor for a scatterer

K ) 2 t,+t,
. 2[5 appos s

4 2mA -\ oy

. 110000
j1idzidg 123 at the center, up to ordef®, is found to bg12]
where DI? 1 1 1
K(T)Zl—|—|T+—|D|4Tz+(—|D|4——|D|6> .
©0)_ Cimia 4 8 2 24
Ay’'=(2AIm\8wkl,)e , 9
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FIG. 1. The form factor of a scatterer at a typical position, for ~ FIG- 2. The form factor for the scatterer at the centej<0)
some diffraction constants, thin lines, compared to the analytica?ompared to the sc_aled form factor calculated from perturbed levels
result(11), heavy lines. (12) and the analytical resu(®).

To obtain Eq.(9) we used the optical theorem, which for spectrum. The eigenvalues of the four different symmetry
angle independent scattering is classes of the rectangle can be assumed to be uncorrelated,

leading to

1
ImD=—Z|D|2. (10) 3 1
Kan(7)= 2t Zerr(47)- (12

If the scatterer is at a typical location, namely, shifted from
the center by §,a,,5,a,), with 8,,5,, and 6,/5, all irra- The form factor calculated from all levels and the scaled

tional, the form factor i§12] form factor obtained from the perturbed levels with the help
of Eq. (12) are compared to the analytical res(®, for D
ID|? 81 25 =—4i in Fig. 2. It is clear that Eq(12) is valid. For very
K(r)=1-—=7+ @|D|472+5—12|D|473— ﬁ|D|GT3- small times the full form factor deviates from its expected

(11) value since there are not enough orbits that contrilftite
calculation is not semiclassical enough
The difference between Eq9) and (11) is due to length In order to study the effect of the angle dependence of the
degeneracies. When the scatterer is at the center there dféfraction on the form factor it was calculated to ordérfor
four diffracting segments of identical length, while if it is the diffraction constant2). For a scatterer at a typical loca-
moved from the center this degeneracy is broken. For a quaton the form factor is found to bgL2]
ter of all diffracting segments, for whidN; andM; are odd, 1 9
the degeneracy is totally lifted. For orbits with evidhn and e o O PV S S
M; the location of the scatterer does not affect thJis degen- K(n=1 4ICI ( 128ICI T (13
eracy. For the rest of the segments the degeneracy is only
partly lifted. When all length degeneracies are taken intol'his form factor is similar to Eq11). SinceC of (3) satisfies
account one obtains E¢l1). the optical theoren(10), this form factor can also be ob-
The form factor can be compared with numerical resultdained from an angle independent potential, with the diffrac-
obtained for the case of point interactions, where the eigertion constantC. If the scatterer is at the centgt2],
values are the roots of some function, and therefore can be
easily found numerically9]. The form factor was calculated
for several values oD and compared to the analytical result
(1) in Fig. 1. Agreement with Eq(11) is found for short
times, as is expected. with C'=1-2k?a?M,, where M, is related to integrals
For a scatterer at the center only levels with wave func-over the potentiall). It resembles the form factd®) that
tions that are symmetric with respect to tiendY axes are was obtained for angle independent scattering. The modifi-
perturbed by the scatterer. Since the value of these waweation is of the ordek?a? and typically cannot change the
functions for all eigenvalues is the samigp,(x=0) sign of the expansion coefficients.
=2/\JA], the resulting equation is the same as for tleb® The condition for the applicability of the approximations
billiard with periodic boundary conditiongll]. The form  used in this Brief Report is<\<a,,a,, where\ is the
factor of the perturbed levels is related to that of the fullwavelength of the particles. Up to corrections of ordem)¢,

1 1
K(T):1—2|C|ZT+ §|c|4c'72+--- (14
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the form factor(13) reduces to Eq(11) in the order 7. and 2. This form factor is equal to 1 a0, resulting from
Therefore the angle dependence plays no role up to this othe fact that for smal- the number of classical orbits that are
der. If the scatterer is at the center the situation is somewhafcattered is small. The contribution that is first orderrin
different as can be seen by comparing Egl) with Eq.(9).  originates from combinations of forward diffracting orbits
There is a correctiol€’ resulting from the angular depen- and periodic orbits. These always have the same lengths,
dence ofD(6',6) given by (2). It is a consequence of the |eading to the contribution I 7. By the optical theorem
incrleased number of Iength degeneracies of .the diffractinglo) it is always negative. For>1 the form factor ap-
orbits when the scatterer is at the center. Since the fo”Broaches unity because of the discreteness of the spectrum

factor (13) describes essentially angle independent scatterin%]_ This general description should hold for other integrable
the limit a— 0 describes correctly the physics of the regimeSystems that are perturbed similarly

a<\. This is so although the classical dynam{zsthe long
time limit) are expected to be chaotic in nearly all of phase It is our great pleasure to thank E. Bogomolny and M.
space and similar to those of the Sinai billiard. This robust-Sieber for inspiring, stimulating, detailed, and informative
ness improves the chances for the experimental realization afiscussions and for informing us about their results prior to
the results of the present work. Fer>)\, semiclassical publication. We would like to thank also M. Aizenman, E.
theory works and the system should behave as a Sinai bikkkermans, and R. E. Prange for critical and informative
liard, with level statistics given by random matrix theory discussions. This research was supported in part by the U.S.-
[3,5] (with deviations, se§25]). Israel Binational Science FoundatiQBSF), by the National
The spectral statistics found in the present work differScience Foundation under Grant No. PHY99-07949, and by
from those of the known universality classes. They are chathe Minerva Center of Nonlinear Physics of Complex
acterized by a form factor of the type presented in Figs. 1Systems.
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